SISTEM PENDUKUNG KEPUTUSAN PEMILIHAN APARATUR SIPIL NEGARA TERBAIK DENGAN METODE WEIGHT PRODUK (WP) PADA KANTOR KEMENTRIAN AGAMA KOTA TIDORE KEPULAUAN

Nursaida Yusuf

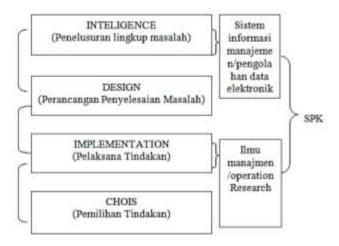
Sistem Informasi STMIK Tidore Mandiri nursaida@stmik-tm.ac.id

ABSTRAK

ASN yang berkualitas dan terbaik merupakan salah satu kebanggaan bagi instansinya. Sehingga kinerja pegawai cukup berpengaruh dalam meningkatkan performa instansinya. Oleh karena itu dibutuhkan sumber daya manusia yang mempunyai kompetensi dan loyalitas yang tinggi. Diperlukan usaha yang maksimal dalam meningkatkan kinerja pegawai. Salah satunya adalah memilih pegawai terbaik guna menstimulus pegawai agar meningkatkan kinerjanya. Sistem pendukung keputusan memberikan alternatif dalam menentukan siapa pegawai terbaik yang akan dipilih. Karena sifat sistem pendukung keputusan yang objektif, cepat, akurat dan berbasis komputer sehingga akan memudahkan dalam pemilihan pegawai terbaik. Metode Weighted Product merupakan bagian dari konsep Fuzzy Multi-Attibut Decision Making (FMADM) dimana diperlukan proses normalisasi di dalam perhitungan normalisasinya. Metode ini secara spesifik menghitung kepada bobot nilai di setiap kriteria yang ada. Sistem pendukung keputusan ini merupakan alat bantu solutif yang dapat memberikan solusi yang dapat membantu dalam proses pemilihan pegawai terbaik secara komputerisasi agar lebih efektif dan efisien. Hasil penelitian membuktikan bahwa aplikasi ini mampu membantu instansi dalam proses seleksi pemilihan pegawai terbaik dengan metode weighted product, serta memberikan informasi pegawai terbaik secara efektif dan efisien.

Kata Kunci: sistem informasi, arsip

I. PENDAHULUAN


Dalam peningkatkan kinerja pegawai merupakan point penting yang dapat meningkatkan kinerja instansi secara keseluruhan. Menjelang akhir setiap tahun berjalan Aparatur Sipil Negara (ASN) diwajibkan untuk mendapatkan penilaian dalam pelaksanaan dan penyelenggaraan pemerintah. Penilaian atas pekerjaan Aparatur Sipil Negara atau dikenal dengan DP3 Aparatur Sipil Negara. Namun daftar penilaian pelaksanaan Aparatur Sipil Negara tersebut memiliki banyak kelemahan sehingga disempurnakan dengan penilaian Terbaik Aparatur Sipil Negara. Kelemahan yang utama dari daftar penilaian pelaksanaan adalah tidak dapat digunakan dalam menilai dan mengukur seberapa besar produktivitas dan kontribusi Aparatur Sipil Negara terhadap organisasi. Untuk itu diterbitkan peraturan pemerintah republik Indonesia nomor 46 tahun 2011 penilaian kinerja terbaik Aparatur Sipil Negara yang dijadikan dasar dalam penyempurnaan pelaksanaan penilaian Aparatur Sipil Negara.

Berdasarkan uraian masalah diatas, penulis perlu adanya untuk membuat sistem dengan menggunakan metode *weight product* yang dapat memberikan sebuah hasil keputusan secara efektif dan efesien. Tujuanya memudahkan bagian SDM dalam melakukan penilaian kinerja pegawai sehingga menghasilkan keputusan yang tepat untuk menentukkan pegawai terbaik pada Kantor Kementerian Agama Kota Tidore Kepulauan.

II. LANDASAN TEORI

Sistem Pendukung Keputusan

Sistem pendukung keputusan adalah suatu sistem informasi berbasis komputer yang melakukan pendekatan untuk menghasilkan berbagai alternatif keputusan untuk membantu pihak tertentu dalam menangani permasalahan dengan menggunakan data dan model. Pengambilan keputusan merupakan hasil suatu proses pemilihan dari berbagai alternatif tindakan yang mungkin dipilih dengan mekanisme tertentu, dengan tujuan untuk menghasilkan keputusan yang terbaik. Suatu SPK hanya memberikan alternatif keputusan dan selanjutnya diserahkan kepada *user* untuk mengambil keputusan [1].

Gambar 1. Fase Proses Pengambilan Keputusan

Metode Weight Product

Metode Weight Produk (WP) sering juga dikenal istilah metode penjumlahan terbobot, dan merupakan salah satu metode yang tergolong dalam penyelesaian masalah Multi Criteria Decision Making (MCDM) cara kerja Metode Weight Produk (WP) adalah menentukan faktor kriteria sebagai manfaat ataukah biaya (konflik antar kriteria) dengan mencari hasil perkalian nilai kriteria alternatif terhadap bobot kriteria [2].

Metode Weight Produk (WP) menggunakan perkalian untuk menghubungkan rating atribut, dimana rating setiap atribut harus dipangkatkan dulu dengan bobot atribut yang bersangkutan. Proses tersebut sama halnya dengan normalisasi. Proses perhitungan pada metode Weight Product terdapat 3 (tiga) langkah:

- 1. Perbaikan bobot kriteria, dengan persamaan sebagai berikut : Wj = $\frac{Wj}{\sum Wj}$
- 2. Menghitung vektor S. Langkah ini sama seperti proses normaliasasi, dengan persamaan sebagai berikut: $Si = \prod_{j=1}^{n} 1$ Xij wj; dengan 1,2..., n Dimana $\sum wj = 1$ wj adalah pangkat yang bernilai positif untuk kategori kriteria keuntungan dan pangkat bernilai negatif untuk kategori kriteria biaya/cost.
- 3. Mengitung vektor V, atau preferensi relatif dari setiap alternatif, untuk perangkingan dengan persamaan sebagai berikut : $V_1 = \frac{\prod_{j=1}^{n} X_{ij} \ Wj}{\prod_{i=1}^{n} (W_i *) Wj}$; dengan 1,2.., n

dimana:

V = Preferensi alternative dianologikan sebagai vektor V

X = Nilai Kritera

W = Bobot Kriteria / subkriteria

i = Alternatif

i = Kriteria

n = Banyaknya Kriteria

* = Banyaknya Kriteria yang telah di nilai pada vektor S

Unified Modeling Language

UML adalah suatu alat untuk memvisualisasikan dan mendokumentasikan hasil analisa dan desain yang berisi sintak dalam memodelkan sistem secara visual. Juga merupakan satu kumpulan konvesi pemodelan yang digunakan untuk menentukan atau menggambarkan sebuah sistem *software* yang terkait dengan objek [3].

Metode Pengembangan Sistem

Model sistem pendukung keputusan yang digunakan dalam penellitian ini adalah dengan menggunakan model *waterfall*. Metode air terjun atau yang sering disebut metode *waterfall* sering dinamakan siklus hidup klasik (*classic life cycle*), dimana hal ini menggambarkan pendekatan yang sistematis dan juga berurutan pada pengembangan perangkat lunak, dimulai dengan spesifikasi kebutuhan pengguna lalu berlanjut melalui tahapan-tahapan perencanaan (*planning*), permodelan (*modeling*), konstruksi (*construction*), serta penyerahan sistem ke para pelanggan/pengguna (*deployment*), yang diakhiri dengan dukungan pada perangkat lunak lengkap yang dihasilkan [4].

III. HASIL DAN PEMBAHASAN

a. Analisa Kebutuhan Data

Dalam penentuan pemilihan pegawai terbaik kami menganalisa data yang diperlukan dalam membuat suatu sistem pendukung keputusan menggunakan metode *Weighted Product* dengan melakukan observasi dan wawancara pada pihak Kantor Kementrian Agama Kota Tidore Kepulauan dalam mengumpulkan data diantaranya:

a. Tabel Bobot Nilai Kriteria

Tabel 1. Bobot Nilai Kriteria

No	Kriteria	Bobot	Cost/Benefit
1.	Perilaku Kerja	30 %	Benefit
2.	Absensi	25 %	Benefit
3.	Pendidikan	25 %	Benefit
4.	Lama Kerja	10 %	Benefit
5.	Kedisiplinan	10 %	Benefit

b. Tabel Bobot Perilaku C1

Tabel 2. Bobot Perilaku (C1)

		,
Atribut Kriteria	Bobot	Keterangan
90-100	5	Sangat Tinggi
80-89	4	Tinggi
70-79	3	Rendah
50-69	2	Sangat Rendah
< 50	1	Cukup

c. Tabel Bobot Absensi C2

Tabel 3. Bobot Absensi (C2)

Atribut Kriteria	Bobot	Keterangan
0	5	Sangat Tinggi
1-3	4	Tinggi
3-4	3	Rendah
5	2	Sangat Rendah
>5	1	Cukup

d. Tabel Bobot Pendidikan C3

Tabel 4. Bobot Pendidikan (C3)

Atribut Kriteria	Bobot	Keterangan
S1-S2	5	Sangat Tinggi
S1-D3	4	Tinggi
D3	3	Rendah
D2	2	Sangat Rendah
SMA	1	Cukup

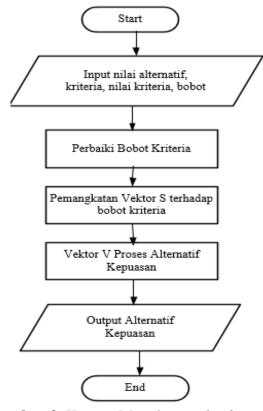
e. Tabel Bobot Lama Kerja C4

Tabel 5. Bobot Lama Kerja (C4)

		3 (/
Atribut Kriteria	Bobot	Keterangan
>10 Tahun	5	Sangat Tinggi
8-9 Tahun	4	Tinggi
7-6 Tahun	3	Rendah
5 Tahun	2	Sangat Rendah
<5 Tahun	1	Cukup

f. Tabel Bobot Kedisiplinan C5

Tabel 6. Bobot Kedisiplinan (C5)

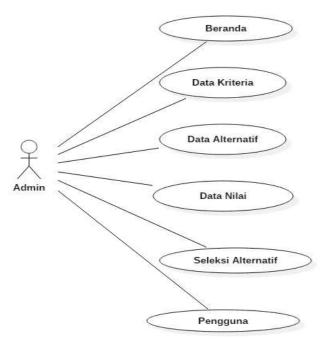

Atribut Kriteria	Bobot	Keterangan
90-100	5	Sangat Tinggi
80-89	4	Tinggi
70-79	3	Rendah
69-50	2	Sangat Rendah
< 50	1	Cukup

g. Tabel Bobot Nilai

Tabel 7. Bobot Nilai

Bobot	Keterangan
5	Sangat Tinggi
4	Tinggi
3	Rendah
2	Sangat Rendah
1	Cukup

a. Ini merupakan proses algoritma pada metode Weighted Product



Gambar 2. Konsep Metode Weighted Product

b. Desain Sistem

Use Case Diagram

Adapun pemodelan pada sistem kami menggunakan *use case diagram, dengan* 1 (satu) aktor, 6 (enam) *assosiation* dan 6 (enam) *case* seperti pada gambar 3 dibawah ini.

Gambar 3. Use Case Diagram SPK Pegawai Terbaik

c. Perbaikan Bobot Kriteria

$\sum W_i = 1$, W_i dengan W_i adalah nilai bobot

$$W1 = \frac{5}{5+4+3+2+1} = \frac{5}{15} = 0,3333$$

$$W2 = \frac{5}{5+4+3+2+1} = \frac{4}{15} = 0,2667$$

$$W3 = \frac{3}{5+4+3+2+1} = \frac{3}{15} = 0,2000$$

$$W4 = \frac{2}{5+4+3+2+1} = \frac{2}{15} = 0,1333$$

$$W5 = \frac{1}{5+4+3+2+1} = \frac{1}{15} = 0,0667$$

b. Nilai Alternatif

$$Vi = \frac{\prod_{j=1}^{n} X_{ij} W_j}{\prod_{j=1}^{n} (x_j) W_j}$$

$$V1 = \frac{3,2149}{3,2149 + 4,6417 + 3,9162 + 3,3550 + 2,5596 + 4,4386 + 4,3088 + 4,7115 + 5,0002 + 3,8075}$$
$$= \frac{3,2149}{39,954} = 0,1185$$

$$V2 = \frac{4,6417}{3,2149 + 4,6417 + 3,9162 + 3,3550 + 2,5596 + 4,4386 + 4,3088 + 4,7115 + 5,0002 + 3,8075}$$
$$= \frac{4,6417}{39.954} = 0,1161$$

$$V3 = \frac{3,9162}{3,2149 + 4,6417 + 3,9162 + 3,3550 + 2,5596 + 4,4386 + 4,3088 + 4,7115 + 5,0002 + 3,8075}$$
$$= \frac{3,9162}{39,954} = 0,0805$$

$$V4 = \frac{3,3550}{3,2149 + 4,6417 + 3,9162 + 3,3550 + 2,5596 + 4,4386 + 4,3088 + 4,7115 + 5,0002 + 3,8075}$$
$$= \frac{3,3550}{39,954} = 0,0839$$

$$V5 = \frac{2,5596}{3,2149 + 4,6417 + 3,9162 + 3,3550 + 2,5596 + 4,4386 + 4,3088 + 4,7115 + 5,0002 + 3,8075}$$
$$= \frac{2,5596}{39,954} = 0,0640$$

$$V6 = \frac{4,4386}{3,2149 + 4,6417 + 3,9162 + 3,3550 + 2,5596 + 4,4386 + 4,3088 + 4,7115 + 5,0002 + 3,8075}$$
$$= \frac{4,4386}{39,954} = 0,1111$$

$$V7 = \frac{4,3088}{3,2149 + 4,6417 + 3,9162 + 3,3550 + 2,5596 + 4,4386 + 4,3088 + 4,7115 + 5,0002 + 3,8075}$$

$$= \frac{4,3088}{39,954} = 0,1078$$

$$V8 = \frac{4,7115}{3,2149 + 4,6417 + 3,9162 + 3,3550 + 2,5596 + 4,4386 + 4,3088 + 4,7115 + 5,0002 + 3,8075}$$

$$= \frac{4,7115}{39,954} = 0,1179$$

$$V9 = \frac{5,0002}{3,2149 + 4,6417 + 3,9162 + 3,3550 + 2,5596 + 4,4386 + 4,3088 + 4,7115 + 5,0002 + 3,8075}$$

$$= \frac{5,0002}{39,954} = 0,1251$$

$$V10 = \frac{3,8075}{3,2149 + 4,6417 + 3,9162 + 3,3550 + 2,5596 + 4,4386 + 4,3088 + 4,7115 + 5,0002 + 3,8075}$$

$$= \frac{3,8075}{39,954} = 0,0953$$

c. Hasil Perangkingan Nilai Preferensi (V)

Tabel 8. Nilai Preferensi (V)

No	NIP Alternatif (Pegawai)		Nilai V	Rangking
1.	198611112020	HAR	0,1251	1
2.	198010222020	FAU	0,1179	2
3.	198829078020	WIS	0,1162	3
4.	199589702020	FTA	0,1111	4
5.	198045667903	AHN	0,1078	5
6.	198211909055	FAZ	0,098	6
7.	199629877790	NAR	0,0953	7
8.	199589702020	UNI	0,084	8
9.	198829078020	MAH	0,0805	9
10	197811119070	INY	0,0641	10

Adapun 10 pegawai yang mengikuti seleksi pemilihan pegawai terbaik pada Kantor Kementrian Agama Kota Tidore Kepulauan dengan hasil uji coba menggunakan metode *Weight Product* maka yang berhak mendapatkan sebagai pegawai terbaik adalah HAR. dengan nilai vektor 0,1251 yang merupakan nilai tertinggi pertama, nilai tertinggi kedua adalah FAU dengan nilai vektor 0,1179, nilai tertinggi ketiga adalah WIS dengan nilai vektor 0,1162, nilai tertinggi ke empat adalah FTA dengan nilai vektor 0,1111, nilai tertinggi ke lima adalah AHN dengan nilai vektor 0,1078.

d. Hasil Tampilan Awal SPK Pegawai Terbaik

Metode WP	- Weighted Product j
Usemame Password	admin Login
Untuk login	gunakan Username "admin" dan Password "a" Developed By Inayah Riskia STMIK Tidore Mandiri

Gambar 4. Halaman Login SPK Pegawai Teladan

Gambar 5. Halaman Beranda SPK Pegawai Teladan

Data Kriteria

Gambar 6. Halaman Data Kriteria

Nilai Alternatif

N.C.	WID	Attornatif (Donama)		Nilai Kriteria				
neo,	NIP	Alternatif [Pegawai]	Perilaku Kerja	Absensi	Pendidikan	Lama Kerja	Kedisiplinan	
1	198010222020	Maria Husen	2	3	5	5	5	
2	198611112020	Wildan Idris	5	4	5	5	4	
3	198829078020	Fatma Azzahra	5	2	5	5	5	
4	199589702020	Unita	5	4	2	2	3	
5	198045667903	Idha NY	4	1	3	4	3	
6	198211909055	Fanita	4	5	5	4	4	
7	199629877790	Alya Hasan	5	4	4	4	4	
8	199589702021	Faris Abu	5	4	5	5	5	
9	198829078019	Harwis R.	5	5	5	5	5	
10	197811119070	Nara Albanjar	3	5	5	3	3	

Gambar 7. Tampilan Hasil Seleksi Data Alternatif

Vektor S

Nin	NIP	Alternatif (December)		Nilai Kriteria				
No.		Alternatif [Pegawai]	Perilaku Kerja	Absensi	Pendidikan	Lama Kerja	Kedisiplinan	
1	198010222020	Maria Husen	1,2599	1,3404	1,3797	1,2394	1,1133	
2	198611112020	Wildan Idris	1,7100	1,4473	1,3797	1,2394	1,0968	
3	198829078020	Fatma Azzahra	1,7100	1,2030	1,3797	1,2394	1,1133	
4	199589702020	Unita	1,7100	1,4473	1,1487	1,0968	1,0760	
5	198045667903	Idha NY	1,5874	1,0000	1,2457	1,2030	1,0760	
6	198211909055	Fanita	1,5874	1,5360	1,3797	1,2030	1,0968	
7	199629877790	Alya Hasan	1,7100	1,4473	1,3195	1,2030	1,0968	
8	199589702021	Faris Abu	1,7100	1,4473	1,3797	1,2394	1,1133	
9	198829078019	Harwis R.	1,7100	1,5360	1,3797	1,2394	1,1133	
10	197811119070	Nara Albanjar	1,4422	1,5360	1,3797	1,1578	1,0760	

Gambar 8. Tampilan Hasil Seleksi Data Alternatif

Nilai Preferensi (V) (Perangkingan)

Rank	NIP	Alternatif [Pegawai]	Skor Akhir (N. Pref. (V))	
1	198829078019	Harwis R.	0.0381	
2	199589702021	Faris Abu	0.0359	
3	198611112020	Wildan Idris	0.0353	
4	198211909055	Fanita	0.0338	
5	199629877790	Alya Hasan	0.0328	
6	198829078020	Fatma Azzahra	0.0298	
7	197811119070	Nara Albanjar	0.029	
8	199589702020	Unita	0.0255	
9	198010222020	Maria Husen	0.0245	
10	198045667903	Idha NY	0.0195	

Gambar 9. Tampilan Nilai Preferensi (V)

IV. SIMPULAN DAN SARAN

Simpulan

Simpulan yang diperoleh dalam penelitian ini adalah metode *Weight Produk* (WP) dapat membantu dalam pengambilan keputusan untuk menentukan pegawai terbaik. dari 10 pegawai diperoleh niali Idha NY = 0.0641 dengan nilai terendah dan Harwis R = 0.1251 sebagai nilai terbaik.

Saran

Untuk penelitian selanjutnya agar dapat dikembangkan lebih baik lagi dengan menambahkan menu grafik presentase hasil preferensi.

DAFTAR PUSTAKA

- [1] O. Fajarianto, M. Iqbal, and J. T. Cahya, "Sistem Penunjang Keputusan Seleksi Penerimaan Karyawan Dengan Metode Weighted Product," *J. Sisfotek Glob.*, vol. 7, no. 1, pp. 49–55, 2017.
- [2] A. C. Yudistira and Y. S. Sari, "Sistem Pendukung Keputusan Menggunakan Metode Weighted Product untuk Pemilihan Karyawan Terbaik UMKM ZainToppas," *J. Sisfokom (Sistem Inf. dan Komputer)*, vol. 9, no. 2, pp. 229–235, 2020, doi: 10.32736/sisfokom.v9i2.870.
- [3] Reni Maharani & Mustar Aman, "untuk mendukung kegiatan operasional sehari-hari pada sekolah tersebut. Dengan adanya aplikasi berbasis," *J. Ipsikom*, vol. 5, no. 2, 2017.
- [4] A. Hafiz, "SISTEM PENDUKUNG KEPUTUSAN PEMILIHAN KARYAWAN TERBAIK DENGAN PENDEKATAN WEIGHTED PRODUCT (Studi Kasus: PT. Telkom Cab. Lampung)," vol. XV, no. April, pp. 23–28, 2018.